The Science of Carbon Farming & Land-based Climate Solutions

Kelsey Bearden

AppleSeed Permaculture

Antioch University New England

What are you hoping to gain in this session?

Name

An identity (ex: parent, farmer, electrician) What do you hope to gain from this session?

This is what we're up against

Challenges: climate change, food security, land restoration, environmental & climate justice

The Next 10 Years Will Determine the Next 1000+

Climate [in]justice & debt

- Climate change is driven by excessive consumption & energy use by wealthy people
 & wealthy industrialized nations
- Poorer nations, POC, & Indigenous Peoples who have contributed **least** to cause climate change are bearing **most** of the burden

This is what gives me hope

What is Carbon Farming, anyway?

- Storing C in terrestrial ecosystems: More C going into the soil than going out
- Mitigate & Adapt to climate change
- [Ideally/future] Farmers getting compensated for that service

Carbon Farming has Significant Co-Benefits

- Soil & water conservation
- Climate change resilience
- Increased yields via better soil health, crop synergies & diversified/intensified production
- Better profitability in many systems long term

BUT: Risks & Challenges

- Carbon farming requires land use and business transition...which means cost, risk, & time for farmers.
- Land access and land justice is central to building out carbon farming.
- Public, private, & philanthropic funding needed for this transition. We need to develop full financing & technical assistance packages for climate retrofits.
- Basic science is well established and understood, but research questions (and some controversies) remain.

It's not *just* about the carbon...

This is the holiness of "dirt."

Carbon

Basic building block of life

What is C sequestration?

- 1. Carbon Capture & Storage (CCS)
- 2. Biological sequestration

Geoengineering CCS

What is
Carbon
Sequestration

?

Carbon sequestration pathways

2. Photosynthesis → soil C

From Biklé & Montgomery (2016) http://nautil.us

Carbon sequestration pathways

3. Decomposition \rightarrow soil C

Review

- 1. Photosynthesis
 - \rightarrow plants
- 2. Photosynthesis
 - \rightarrow Soil C
- 3. Decomposition
 - \rightarrow Soil C

Carbon pools & residence times

- 1. Active (exudates!) \rightarrow Fast, 1-5 yrs
- 2. Particulate organic matter \rightarrow Slow, 20-50 yrs
- $3. \text{ Humus} \rightarrow \text{Semi-permanent}, 100-5,000 \text{ yrs}$